Statistics and econometric models : volume 1: general concepts, estimation, prediction and algorithms / Christian Gourieroux, Alain Monfort.
Material type:
- Texto
- Sin mediación
- Volumen
- 0521405513
- 330.015195 G68s 20
- B23
Item type | Home library | Call number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
LIBRO FISICO | Biblioteca Principal | 330.015195 G68s (Browse shelf(Opens below)) | Available | Mantener en colección. | 29004018970003 |
Close shelf browser (Hides shelf browser)
330.015195 G45s The structure of applied general equilibrium models / | 330.015195 G47e Econometría aplicada usando Stata 13 / | 330.015195 G63m Misspecification tests in econometrics : | 330.015195 G68s Statistics and econometric models : | 330.015195 G71e Empirical modeling in economics : | 330.015195 G71m Modelling nonlinear economic relationships / | 330.015195 G733a Análisis econométrico / |
Incluye bibliografías e índice.
1. Models: 1.1. Modelling ; 1.2. Statiscal models ; 1.3. Intermediate ; 1.4. Conditional models ; 1.5. Dynamic models ; 1.6. Exercises -- 2. Statistical problems and decision theory: 2.1. Examples of statistical problems ; 2.2. Decision rules ; 2.3. Ordering decision rules ; 2.4. An example ; 2.5. Other orderings of decision rules ; 2.6. Exercises -- 3. Statistical information: classical approach: 3.1. Sufficiency ; 3.2. Ancillarity ; 3.3. Information measures ; 3.4. Identification ; 3.5. Exercises -- 4. Bayesian interpretations of sufficiency, Ancillarity and identification: 4.1. Sufficiency ; 4.2. Ancillarity ; 4.3. Identification ; 4.4. Exercises -- 5. Elements of estimation theory: 5.1. Consequences of decision theory ; 5.2. Estimation principles ; 5.3. Search for good estimators ; 5.4. Exercises -- 6. Unbiased estimation: 6.1. Definitions ; 6.2. FDRC inequality ; 6.3. Best unbiased estimators ; 6.4. Best invariant unbiased estimators ; 6.5. Biased and unbiased estimators ; 6.6. Exercises -- 7. Maximum likelihood estimation: 7.1. Principle ; 7.2. Likelihood equations ; 7.3. Finite sample properties ; 7.4. Asymptotic properties ; 7.5. Marginal and conditional ml estimation ; 7.6. Exercises -- 8. M-estimation: 8.1. Definition and asymptotic properties ; 8.2. Nonlinear regression models of order 1 and 2 ; 8.3. Nonlinear least squares ; 8.4. Pseudo maximum likelihood estimation ; 8.5. Estimation of a conditional median ; 8.6. Appendix ; 8.7. Exercises -- 9. Methods of moments and their generalizations: 9.1. Asymptotic least squares ; 9.2. Examples ; 9.3. Seemingly linear models ; 9.4. Instrumental variable estimation ; 9.5. Generalized methods of moments ; 9.6. Exercises -- 10. Estimation under equality constraints: 10.1. Constraints ; 10.2. Least squares under linear constraints ; 10.3. Asymptotic properties ; 10.4. Constrained two-step estimation ; 10.5. Examples ; 10.6. Exercises -- 11. Prediction: 11.1. General concepts ; 11.2. Examples ; 11.3. Residuals ; 11.4. Appendix ; 11.5. Exercises -- 12. Bayesian estimation: 12.1. The Bayesian approach ; 12.2. Conjugate priors ; 12.3. Asymptotic results ; 12.4. Diffuse priors ; 12.5. Best linear unbiased Bayesian estimation ; 12.6. Approximate determination of posterior distributions ; 12.7. Appendix ; 12.8. Exercises -- 13. Numerical procedures: 13.1. Numerical optimization ; 13.2. Fixed point methods ; 13.3. EM Algorithm ; 13.4. Kalman filter ; 13.5. Prediction and smoothing in state space models ; 13.6. Recursive least squares and recursive residuals ; 13.7. Exercises.
There are no comments on this title.