An introduction to wavelets and other filtering methods in finance and economics / Ramazan Gencay, Faruk Selcuk, Brandon Whitcher.
Material type:
- Texto
- Sin mediación
- Volumen
- 0122796705
- 330.015195 G35i 21
- B23
Item type | Home library | Call number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
LIBRO FISICO | Biblioteca Principal | 330.015195 G35i (Browse shelf(Opens below)) | Pending hold | Mantener en colección. | 29004018979921 | 1 |
Close shelf browser (Hides shelf browser)
No cover image available | ||||||||
330.015195 G15i An introduction to econometric theory : | 330.015195 G15t The theory of linear economic models / | 330.015195 G35 Generalized method of moments estimation | 330.015195 G35i An introduction to wavelets and other filtering methods in finance and economics / | 330.015195 G45s The structure of applied general equilibrium models / | 330.015195 G47e Econometría aplicada usando Stata 13 / | 330.015195 G63m Misspecification tests in econometrics : |
Incluye referencias bibliográficas (páginas 323-348) e índice.
I. Introduction: 1.1. Fourier versus Wavelet analysis ; 1.2. Seasonality filtering ; 1.3. Denoising ; 1.4. Identification of structural breaks ; 1.5. Scaling ; 1.6. Aggregate heterogeneity and timescales ; 1.7. Multiscale cross-correlation ; 1.8. Outline -- 2. Linear filters: 2.1. Introduction ; 2.2. Filters in time domain ; 2.3. Filters in the frequency domain ; 2.4. Filters in practice -- 3 .Optimum linear estimation: 3.1. Introduction ; 3.2. The wiener filter and estimation ; 3.3. Recursive filtering and the Kalman filter ; 3.4. Prediction with the Kalman filter ; 3.5. Vector Kalmar filter estimation ; 3.6. Application -- 4. Discrete wavelet transforms: 4.1. Introduction ; 4.2. Properties of the wavelet transform ; 4.3. Discrete wavelet filters ; 4.4. The discrete wavelet transform ; 4.5. The maximal overlap discrete wavelet transform ; 4.6. Practical issues in implementation ; 4.7. Applications -- 5. Wavelets and stationary processes: 5.1. Introduction ; 5.2. Wavelets and long-memory processes ; 5.3. Generalizations of the DWT and MODWT ; 5.4. Wavelets and seasonal long memory ; 5.5. Application -- 6. Wavelet Denoising: 6.1. Introduction ; 6.2. Nonlinear Denoising via Thresholding ; 6.3. Thresholds selection ; 6.4. Implementing wavelet Denoising ; 6.5. Application -- 7. Wavelets for variance-covariance estimation: 7.1. Introduction ; 7.2. The wavelet variance ; 7.3. Testing homogeneity of variance ; 7.4. The wavelet covariance and cross-covariance ; 7.5. The wavelet correlation and cross-correlation ; 7.6. Applications ; 7.7. Univariate and bivariate spectrum analysis -- 8. Artificial neural networks: 8.1. Introduction ; 8.2. Activation functions ; 8.3. Feedforward networks ; 8.4. Recurrent networks ; 8.5. Network selection ; 8.5. Network selections ; 8.6. Adaptivity ; 8.7. Estimation of recurrent networks ; 8.8. Applications of neural networks models.
There are no comments on this title.