Econometrics of financial high-frequency data / Nikolaus Hautsch.
Material type:
- Texto
- Sin mediación
- Volumen
- 9783642219245
- 332.6 H18e 21
- F30
Item type | Home library | Call number | Vol info | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
LIBRO FISICO | Biblioteca Principal | 332.6 H18e (Browse shelf(Opens below)) | Ejemplar 1 | Available | Mantener en colección. | 29004025502559 |
Close shelf browser (Hides shelf browser)
No cover image available | ||||||||
332.6 F71f Financial markets and monetary policy / | 332.6 G56 Global portfolio diversifications : | 332.6 H18e Econometrics of financial high-frequency data / | 332.6 H18e Econometrics of financial high-frequency data / | 332.6 H47t Time, uncertainty, and information / | 332.6 J65i Investment : | 332.6 M17p Portfolio selection : |
Incluye bibliografías e índice.
1. Introduction: 1.1.Motivation ; 1.2. Structure of the book -- 2. Microstructure foundations: 2.1. The institutional framework of trading ; 2.2. A Review of market microstructure theory -- 3. Empirical properties of high-frequency data: 3.1. Handling high-frequency data ; 3.2. Aggregation by trading events: financial durations ; 3.3. Properties of financial durations ; 3.4. Properties of trading characteristics ; 3.5. Properties of time aggregated data ; 3.6. Summary of major empirical findings -- 4. Financial point processes: 4.1. Basic concepts of point processes ; 4.2. Four ways to model point processes ; 4.3. Censoring and time-varying covariates ; 4.4. An outlook on dynamic extensions -- 5.Univariate multiplicative error models: 5.1. ARMA models for log variables ; 5.2. A MEM for durations: the ACD model ; 5.3. Estimation of the ACD model ; 5.4. Seasonality’s and explanatory variables ; 5.5. The Log-ACD model ; 5.6. Testing the ACD model -- 6.Generalized multiplicative error models: 6.1. A Class of augmented ACD models ; 6.2. Regime-switching ACD models ; 6.3. Long memory ACD models ; 6.4. Mixture and component multiplicative error ; 6.5. Further generalizations of multiplicative error models -- 7.Vector multiplicative error models: 7.1. VMEM Processes ; 7.2. Stochastic vector multiplicative error models -- 8. Modelling high-frequency volatility: 8.1. Intraday quadratic variation measures ; 8.2. Spot variances and jumps ; 8.3.Trade-based volatility measures ; 8.4. Volatility measurement using price durations ; 8.5. Modelling quote volatility -- 9.Estimating market liquidity: 9.1.Simple spread and price impact measures ; 9.2. Volume based measures ; 9.3. Modelling order book depth -- 10. Semiparametric dynamic proportional hazard models: 10.1. Dynamic integrated hazard processes ; 10.2. The semiparametric ACPH model ; 10.3. Properties of the semiparametric ACPH model ; 10.4. Extended SACPH models ; 10.5. Testing the SACPH model ; 10.6. Estimating Volatility Using the SACPH model -- 11.Univariate Dynamic Intensity Models: 11.1. The autoregressive conditional Intensity Model ; 11.2. Generalized ACI models ; 11.3. Hawkes processes -- 12. Multivariate dynamic intensity models: 12.1. Multivariate ACI models ; 12.2. Applications of multivariate ACI models ; 12.3. Multivariate Hawkes processes ; 12.4. Stochastic conditional intensity processes ; 12.5. SCI Modelling of multivariate price intensities -- 13. Autoregressive discrete processes and quote dynamics: 13.1. Univariate dynamic count data models ; 13.2. Multivariate ACP models ; 13.3. A Simple model for transaction price dynamics ; 13.4. Autoregressive conditional multinomial models ; 13.5. Autoregressive models for integer-valued variables ; 13.6. Modelling ask and bid quote dynamics.
There are no comments on this title.