Financial derivatives : pricing applications, and mathematics / Jamil Baz, George Chacko.
Material type:
- Texto
- Sin mediación
- Volumen
- 052181510X
- 332.632 B19f 21
- O16
Item type | Home library | Call number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
LIBRO FISICO | Biblioteca Principal | 332.632 B19f (Browse shelf(Opens below)) | Available | Mantener en colección. | 29004016840430 |
Close shelf browser (Hides shelf browser)
332.63 S15f Financial markets, instruments, and institutions / | 332.632 A71m El mercado de capitales colombiano en los noventa y las firmas comisionistas de bolsa / | 332.632 A71m El mercado de capitales colombiano en los noventa y las firmas comisionistas de bolsa / | 332.632 B19f Financial derivatives : | 332.632 B78c Credit derivatives and structural credit : | 332.632 C41a Analysis of derivatives for CFA program / | 332.632 C65 Colombia: hacia un país de propietarios : |
Incluye bibliografías e índice.
1. Preliminary mathematics: 1.1. Random Walk ; 1.2. Another take on volatility and time ; 1.3. A first glance at Ito’s lemma ; 1.4. Continuous time: Brownian Motion ; More o Ito’s Lemma ; 1.5. Two-dimensional Brownian Motion ; 1.6. Bivariate Ito’s Lemma ; 1.7. Three paradoxes of finance -- 2. Principles of financial valuation: 2.1. Uncertainty, utility theory, and risk ; 2.2. Risk and the equilibrium pricing of securities ; 2.3. The binomial option-pricing model ; 2.4. Limiting option-pricing formula ; 2.5. Continuous-time models ; 2.6. Exotic options -- 3. Interest rate models: 3.1. Interest rate derivatives: not so simple ; 3.2. Bonds and yields ; 3.3. Naïve models of interest rate risk ; 3.4. An overview of interest rate derivatives ; 3.5. Yield curve Swaps ; 3.6. Factor models ; 3.7. Term-structure-consistent models ; 3.8. Risky bonds and their-toy model ; 3.9. The heath, Jarrow, and Morton approach ; 3.10. Interest rates as options -- 4. Mathematics of asset pricing: 4.1. Random Walks ; 4.2. Arithmetic Brownian Motion ; 4.3. Geometric Brownian motion ; 4.4. Ito calculus ; 4.5. Mean-reverting processes ; 4.6. Mean-reverting processes ; 4.6. Jump process ; 4.7. Kolmogorov equations ; 4.8. Martingales ; 4.9. Dynamic programming ; 4.10. Partial differential equations.
There are no comments on this title.