Learning from Shared News: When Abundant Information Leads to Belief Polarization / Renee Bowen, Danil Dmitriev, Simone Galperti.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w28465 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
February 2021.
We study learning via shared news. Each period agents receive the same quantity and quality of first-hand information and can share it with friends. Some friends (possibly few) share selectively, generating heterogeneous news diets across agents akin to echo chambers. Agents are aware of selective sharing and update beliefs by Bayes' rule. Contrary to standard learning results, we show that beliefs can diverge in this environment leading to polarization. This requires that (i) agents hold misperceptions (even minor) about friends' sharing and (ii) information quality is sufficiently low. Polarization can worsen when agents' social connections expand. When the quantity of first-hand information becomes large, agents can hold opposite extreme beliefs resulting in severe polarization. Our results hold without media bias or fake news, so eliminating these is not sufficient to reduce polarization. When fake news is included, we show that it can lead to polarization but only through misperceived selective sharing. News aggregators can curb polarization caused by shared news.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.