Image from Google Jackets

The Persistence of Miscalibration / Michael Boutros, Itzhak Ben-David, John R. Graham, Campbell R. Harvey, John W. Payne.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w28010.Publication details: Cambridge, Mass. National Bureau of Economic Research 2020.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Using 14,800 forecasts of one-year S&P 500 returns made by Chief Financial Officers over a 12-year period, we track the individual executives who provide multiple forecasts to study how their beliefs evolve dynamically. While CFOs' return forecasts are systematically unbiased, their confidence intervals are far too narrow, implying significant miscalibration. We find that when return realizations fall outside of ex-ante confidence intervals, CFOs' subsequent confidence intervals widen considerably. These results are consistent with a model of Bayesian learning which suggests that the evolution of beliefs should be impacted by return realizations. However, the magnitude of the updating is dampened by the strong conviction in beliefs inherent in the initial miscalibration and, as a result, miscalibration persists.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w28010 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

October 2020.

Using 14,800 forecasts of one-year S&P 500 returns made by Chief Financial Officers over a 12-year period, we track the individual executives who provide multiple forecasts to study how their beliefs evolve dynamically. While CFOs' return forecasts are systematically unbiased, their confidence intervals are far too narrow, implying significant miscalibration. We find that when return realizations fall outside of ex-ante confidence intervals, CFOs' subsequent confidence intervals widen considerably. These results are consistent with a model of Bayesian learning which suggests that the evolution of beliefs should be impacted by return realizations. However, the magnitude of the updating is dampened by the strong conviction in beliefs inherent in the initial miscalibration and, as a result, miscalibration persists.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha