Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money / Mohammad Akbarpour, Julien Combe, Yinghua He, Victor Hiller, Robert Shimer, Olivier Tercieux.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w27765 (Browse shelf(Opens below)) | Not For Loan |
September 2020.
For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation (the patient receives a kidney before the donor donates) and donation-before-receipt, causing a double-coincidence-of-wants problem. Our proposed algorithm, the Unpaired kidney exchange algorithm, uses "memory" as a medium of exchange to eliminate these timing constraints. In a dynamic matching model, we prove that Unpaired delivers a waiting time of patients close to optimal and substantially shorter than currently utilized state-of-the-art algorithms. Using a rich administrative dataset from France, we show that Unpaired achieves a match rate of 57 percent and an average waiting time of 440 days. The (infeasible) optimal algorithm is only slightly better (58 percent and 425 days); state-of-the-art algorithms deliver less than 34 percent and more than 695 days. We draw similar conclusions from the simulations of two large U.S. platforms. Lastly, we propose a range of solutions that can address the potential practical concerns of Unpaired.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.