Advances in Structural Vector Autoregressions with Imperfect Identifying Information / Christiane Baumeister, James D. Hamilton.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w27014 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
April 2020.
This paper examines methods for structural interpretation of vector autoregressions when the identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian approach offers a unifying theme for guiding inference in such settings. Among other advantages, the unified approach solves a problem with calculating elasticities that appears not to have been recognized by earlier researchers. We also call attention to some computational concerns of which researchers who approach this problem using other methods should be aware.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.