Image from Google Jackets

Design and Analysis of Cluster-Randomized Field Experiments in Panel Data Settings / Bharat K. Chandar, Ali Hortaçsu, John A. List, Ian Muir, Jeffrey M. Wooldridge.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w26389.Publication details: Cambridge, Mass. National Bureau of Economic Research 2019.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Field experiments conducted with the village, city, state, region, or even country as the unit of randomization are becoming commonplace in the social sciences. While convenient, subsequent data analysis may be complicated by the constraint on the number of clusters in treatment and control. Through a battery of Monte Carlo simulations, we examine best practices for estimating unit-level treatment effects in cluster-randomized field experiments, particularly in settings that generate short panel data. In most settings we consider, unit-level estimation with unit fixed effects and cluster-level estimation weighted by the number of units per cluster tend to be robust to potentially problematic features in the data while giving greater statistical power. Using insights from our analysis, we evaluate the effect of a unique field experiment: a nationwide tipping field experiment across markets on the Uber app. Beyond the import of showing how tipping affects aggregate market outcomes, we provide several insights on aspects of generating and analyzing cluster-randomized experimental data when there are constraints on the number of experimental units in treatment and control.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w26389 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

October 2019.

Field experiments conducted with the village, city, state, region, or even country as the unit of randomization are becoming commonplace in the social sciences. While convenient, subsequent data analysis may be complicated by the constraint on the number of clusters in treatment and control. Through a battery of Monte Carlo simulations, we examine best practices for estimating unit-level treatment effects in cluster-randomized field experiments, particularly in settings that generate short panel data. In most settings we consider, unit-level estimation with unit fixed effects and cluster-level estimation weighted by the number of units per cluster tend to be robust to potentially problematic features in the data while giving greater statistical power. Using insights from our analysis, we evaluate the effect of a unique field experiment: a nationwide tipping field experiment across markets on the Uber app. Beyond the import of showing how tipping affects aggregate market outcomes, we provide several insights on aspects of generating and analyzing cluster-randomized experimental data when there are constraints on the number of experimental units in treatment and control.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha