Image from Google Jackets

Leave-out Estimation of Variance Components / Patrick Kline, Raffaele Saggio, Mikkel Sølvsten.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w26244.Publication details: Cambridge, Mass. National Bureau of Economic Research 2019.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We propose leave-out estimators of quadratic forms designed for the study of linear models with unrestricted heteroscedasticity. Applications include analysis of variance and tests of linear restrictions in models with many regressors. An approximation algorithm is provided that enables accurate computation of the estimator in very large datasets. We study the large sample properties of our estimator allowing the number of regressors to grow in proportion to the number of observations. Consistency is established in a variety of settings where plug-in methods and estimators predicated on homoscedasticity exhibit first-order biases. For quadratic forms of increasing rank, the limiting distribution can be represented by a linear combination of normal and non-central χ<sup>2</sup> random variables, with normality ensuing under strong identification. Standard error estimators are proposed that enable tests of linear restrictions and the construction of uniformly valid confidence intervals for quadratic forms of interest. We find in Italian social security records that leave-out estimates of a variance decomposition in a two-way fixed effects model of wage determination yield substantially different conclusions regarding the relative contribution of workers, firms, and worker-firm sorting to wage inequality than conventional methods. Monte Carlo exercises corroborate the accuracy of our asymptotic approximations, with clear evidence of non-normality emerging when worker mobility between blocks of firms is limited.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

September 2019.

We propose leave-out estimators of quadratic forms designed for the study of linear models with unrestricted heteroscedasticity. Applications include analysis of variance and tests of linear restrictions in models with many regressors. An approximation algorithm is provided that enables accurate computation of the estimator in very large datasets. We study the large sample properties of our estimator allowing the number of regressors to grow in proportion to the number of observations. Consistency is established in a variety of settings where plug-in methods and estimators predicated on homoscedasticity exhibit first-order biases. For quadratic forms of increasing rank, the limiting distribution can be represented by a linear combination of normal and non-central χ<sup>2</sup> random variables, with normality ensuing under strong identification. Standard error estimators are proposed that enable tests of linear restrictions and the construction of uniformly valid confidence intervals for quadratic forms of interest. We find in Italian social security records that leave-out estimates of a variance decomposition in a two-way fixed effects model of wage determination yield substantially different conclusions regarding the relative contribution of workers, firms, and worker-firm sorting to wage inequality than conventional methods. Monte Carlo exercises corroborate the accuracy of our asymptotic approximations, with clear evidence of non-normality emerging when worker mobility between blocks of firms is limited.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha