Image from Google Jackets

Should We Trust Clustered Standard Errors? A Comparison with Randomization-Based Methods / Lourenço S. Paz, James E. West.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w25926.Publication details: Cambridge, Mass. National Bureau of Economic Research 2019.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We compare the precision of critical values obtained under conventional sampling-based methods with those obtained using sample order statics computed through draws from a randomized counterfactual based on the null hypothesis. When based on a small number of draws (200), critical values in the extreme left and right tail (0.005 and 0.995) contain a small bias toward failing to reject the null hypothesis which quickly dissipates with additional draws. The precision of randomization-based critical values compares favorably with conventional sampling-based critical values when the number of draws is approximately 7 times the sample size for a basic OLS model using homoskedastic data, but considerably less in models based on clustered standard errors, or the classic Differences-in-Differences. Randomization-based methods dramatically outperform conventional methods for treatment effects in Differences-in-Differences specifications with unbalanced panels and a small number of treated groups.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w25926 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

June 2019.

We compare the precision of critical values obtained under conventional sampling-based methods with those obtained using sample order statics computed through draws from a randomized counterfactual based on the null hypothesis. When based on a small number of draws (200), critical values in the extreme left and right tail (0.005 and 0.995) contain a small bias toward failing to reject the null hypothesis which quickly dissipates with additional draws. The precision of randomization-based critical values compares favorably with conventional sampling-based critical values when the number of draws is approximately 7 times the sample size for a basic OLS model using homoskedastic data, but considerably less in models based on clustered standard errors, or the classic Differences-in-Differences. Randomization-based methods dramatically outperform conventional methods for treatment effects in Differences-in-Differences specifications with unbalanced panels and a small number of treated groups.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha