Computer Vision and Real Estate: Do Looks Matter and Do Incentives Determine Looks / Edward L. Glaeser, Michael Scott Kincaid, Nikhil Naik.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w25174 (Browse shelf(Opens below)) | Not For Loan |
October 2018.
How much does the appearance of a house, or its neighbors, impact its price? Do events that impact the incentives facing homeowners, like foreclosure, impact the maintenance and appearance of a home? Using computer vision techniques, we find that a one standard deviation improvement in the appearance of a home in Boston is associated with a .16 log point increase in the home's value, or about $68,000 at the sample mean. The additional predictive power created by images is small relative to location and basic home variables, but external images do outperform variables collected by in-person home assessors. A home's value increases by .4 log points, when its neighbor's visually predicted value increases by one log point, and more visible neighbors have a larger price impact than less visible neighbors. Homes that went through foreclosure during the 2008-09 financial crisis experienced a .04 log point decline in their appearance-related value, relative to comparable homes, suggesting that foreclosures reduced the incentives to maintain the housing stock. We do not find more depreciation of appearance in rental properties, or more upgrading of appearance by owners before resale.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.