Image from Google Jackets

Linking Individuals Across Historical Sources: a Fully Automated Approach / Ran Abramitzky, Roy Mill, Santiago Pérez.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w24324.Publication details: Cambridge, Mass. National Bureau of Economic Research 2018.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Linking individuals across historical datasets relies on information such as name and age that is both non-unique and prone to enumeration and transcription errors. These errors make it impossible to find the correct match with certainty. In the first part of the paper, we suggest a fully automated probabilistic method for linking historical datasets that enables researchers to create samples at the frontier of minimizing type I (false positives) and type II (false negatives) errors. The first step guides researchers in the choice of which variables to use for linking. The second step uses the Expectation-Maximization (EM) algorithm, a standard tool in statistics, to compute the probability that each two records correspond to the same individual. The third step suggests how to use these estimated probabilities to choose which records to use in the analysis. In the second part of the paper, we apply the method to link historical population censuses in the US and Norway, and use these samples to estimate measures of intergenerational occupational mobility. The estimates using our method are remarkably similar to the ones using IPUMS', which relies on hand linking to create a training sample. We created an R code and a Stata command that implement this method.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

February 2018.

Linking individuals across historical datasets relies on information such as name and age that is both non-unique and prone to enumeration and transcription errors. These errors make it impossible to find the correct match with certainty. In the first part of the paper, we suggest a fully automated probabilistic method for linking historical datasets that enables researchers to create samples at the frontier of minimizing type I (false positives) and type II (false negatives) errors. The first step guides researchers in the choice of which variables to use for linking. The second step uses the Expectation-Maximization (EM) algorithm, a standard tool in statistics, to compute the probability that each two records correspond to the same individual. The third step suggests how to use these estimated probabilities to choose which records to use in the analysis. In the second part of the paper, we apply the method to link historical population censuses in the US and Norway, and use these samples to estimate measures of intergenerational occupational mobility. The estimates using our method are remarkably similar to the ones using IPUMS', which relies on hand linking to create a training sample. We created an R code and a Stata command that implement this method.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha