Image from Google Jackets

Personalized Pricing and Consumer Welfare / Jean-Pierre Dubé, Sanjog Misra.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w23775.Publication details: Cambridge, Mass. National Bureau of Economic Research 2017.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We study the welfare implications of personalized pricing, an extreme form of third-degree price discrimination implemented with machine learning for a large, digital firm. Using data from a unique randomized controlled pricing field experiment we train a demand model and conduct inference about the effects of personalized pricing on firm and consumer surplus. In a second experiment, we validate our predictions in the field. The initial experiment reveals unexercised market power that allows the firm to raise its price optimally, generating a 55% increase in profits. Personalized pricing improves the firm's expected posterior profits by an additional 19%, relative to the optimized uniform price, and by 86%, relative to the firm's unoptimized status quo price. Turning to welfare effects on the demand side, total consumer surplus declines 23% under personalized pricing relative to uniform pricing, and 47% relative to the firm's unoptimized status quo price. However, over 60% of consumers benefit from lower prices under personalization and total welfare can increase under standard inequity-averse welfare functions. Simulations with our demand estimates reveal a non-monotonic relationship between the granularity of the segmentation data and the total consumer surplus under personalization. These findings indicate a need for caution in the current public policy debate regarding data privacy and personalized pricing insofar as some data restrictions may not per se improve consumer welfare.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w23775 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

September 2017.

We study the welfare implications of personalized pricing, an extreme form of third-degree price discrimination implemented with machine learning for a large, digital firm. Using data from a unique randomized controlled pricing field experiment we train a demand model and conduct inference about the effects of personalized pricing on firm and consumer surplus. In a second experiment, we validate our predictions in the field. The initial experiment reveals unexercised market power that allows the firm to raise its price optimally, generating a 55% increase in profits. Personalized pricing improves the firm's expected posterior profits by an additional 19%, relative to the optimized uniform price, and by 86%, relative to the firm's unoptimized status quo price. Turning to welfare effects on the demand side, total consumer surplus declines 23% under personalized pricing relative to uniform pricing, and 47% relative to the firm's unoptimized status quo price. However, over 60% of consumers benefit from lower prices under personalization and total welfare can increase under standard inequity-averse welfare functions. Simulations with our demand estimates reveal a non-monotonic relationship between the granularity of the segmentation data and the total consumer surplus under personalization. These findings indicate a need for caution in the current public policy debate regarding data privacy and personalized pricing insofar as some data restrictions may not per se improve consumer welfare.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha