Image from Google Jackets

Identification in Ascending Auctions, with an Application to Digital Rights Management / Joachim Freyberger, Bradley J. Larsen.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w23569.Publication details: Cambridge, Mass. National Bureau of Economic Research 2017.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: This study provides new identification and estimation results for ascending (traditional English or online) auctions with unobserved auction-level heterogeneity and an unknown number of bidders. When the seller's reserve price and two order statistics of bids are observed, we derive conditions under which the distributions of buyer valuations, unobserved heterogeneity, and number of participants are point identified. We also derive conditions for point identification in cases where reserve prices are binding (in which case bids may be unobserved in some auctions) and present general conditions for partial identification. We propose a nonparametric maximum likelihood approach for estimation and inference. We apply our approach to the online market for used iPhones and analyze the effects of recent regulatory changes banning consumers from circumventing digital rights management technologies used to lock phones to service providers. We find that buyer valuations for unlocked phones dropped after the unlocking ban took effect.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w23569 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

July 2017.

This study provides new identification and estimation results for ascending (traditional English or online) auctions with unobserved auction-level heterogeneity and an unknown number of bidders. When the seller's reserve price and two order statistics of bids are observed, we derive conditions under which the distributions of buyer valuations, unobserved heterogeneity, and number of participants are point identified. We also derive conditions for point identification in cases where reserve prices are binding (in which case bids may be unobserved in some auctions) and present general conditions for partial identification. We propose a nonparametric maximum likelihood approach for estimation and inference. We apply our approach to the online market for used iPhones and analyze the effects of recent regulatory changes banning consumers from circumventing digital rights management technologies used to lock phones to service providers. We find that buyer valuations for unlocked phones dropped after the unlocking ban took effect.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha