Image from Google Jackets

Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood? / Steven Lehrer, Tian Xie.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w22959.Publication details: Cambridge, Mass. National Bureau of Economic Research 2016.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Substantial excitement currently exists in industry regarding the potential of using analytic tools to measure sentiment in social media messages to help predict individual reactions to a new product, including movies. However, the majority of models subsequently used for forecasting exercises do not allow for model uncertainty. Using data on the universe of Twitter messages, we use an algorithm that calculates the sentiment regarding each film prior to, and after its release date via emotional valence to understand whether these opinions affect box office opening and retail movie unit (DVD and Blu-Ray) sales. Our results contrasting eleven different empirical strategies from econometrics and penalization methods indicate that accounting for model uncertainty can lead to large gains in forecast accuracy. While penalization methods do not outperform model averaging on forecast accuracy, evidence indicates they perform just as well at the variable selection stage. Last, incorporating social media data is shown to greatly improve forecast accuracy for box-office opening and retail movie unit sales.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w22959 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

December 2016.

Substantial excitement currently exists in industry regarding the potential of using analytic tools to measure sentiment in social media messages to help predict individual reactions to a new product, including movies. However, the majority of models subsequently used for forecasting exercises do not allow for model uncertainty. Using data on the universe of Twitter messages, we use an algorithm that calculates the sentiment regarding each film prior to, and after its release date via emotional valence to understand whether these opinions affect box office opening and retail movie unit (DVD and Blu-Ray) sales. Our results contrasting eleven different empirical strategies from econometrics and penalization methods indicate that accounting for model uncertainty can lead to large gains in forecast accuracy. While penalization methods do not outperform model averaging on forecast accuracy, evidence indicates they perform just as well at the variable selection stage. Last, incorporating social media data is shown to greatly improve forecast accuracy for box-office opening and retail movie unit sales.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha