Image from Google Jackets

Bounds on Treatment Effects in Regression Discontinuity Designs with a Manipulated Running Variable / François Gerard, Miikka Rokkanen, Christoph Rothe.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w22892.Publication details: Cambridge, Mass. National Bureau of Economic Research 2016.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: The key assumption in regression discontinuity analysis is that the distribution of potential outcomes varies smoothly with the running variable around the cutoff. In many empirical contexts, however, this assumption is not credible; and the running variable is said to be manipulated in this case. In this paper, we show that while causal effects are not point identified under manipulation, they remain partially identified under a general model that covers a wide range of empirical patterns. We derive sharp bounds on causal parameters for both sharp and fuzzy designs under our general model, and show how additional structure can be used to further narrow the bounds. We use our methods to study the disincentive effect of unemployment insurance on (formal) reemployment in Brazil, and show that our bounds remain informative, despite the fact that manipulation has a sizable effect on our estimates of causal parameters.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w22892 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

December 2016.

The key assumption in regression discontinuity analysis is that the distribution of potential outcomes varies smoothly with the running variable around the cutoff. In many empirical contexts, however, this assumption is not credible; and the running variable is said to be manipulated in this case. In this paper, we show that while causal effects are not point identified under manipulation, they remain partially identified under a general model that covers a wide range of empirical patterns. We derive sharp bounds on causal parameters for both sharp and fuzzy designs under our general model, and show how additional structure can be used to further narrow the bounds. We use our methods to study the disincentive effect of unemployment insurance on (formal) reemployment in Brazil, and show that our bounds remain informative, despite the fact that manipulation has a sizable effect on our estimates of causal parameters.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha