Image from Google Jackets

Identification and Efficiency Bounds for the Average Match Function under Conditionally Exogenous Matching / Bryan S. Graham, Guido W. Imbens, Geert Ridder.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w22098.Publication details: Cambridge, Mass. National Bureau of Economic Research 2016.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Consider two heterogenous populations of agents who, when matched, jointly produce an output, `Y`. For example, teachers and classrooms of students together produce achievement, parents raise children, whose life outcomes vary in adulthood, assembly plant managers and workers produce a certain number of cars per month, and lieutenants and their platoons vary in unit effectiveness. Let `W\in\mathbb{W}={ w_1,\ldots,w_j} and X\in\mathbb{X}={ x_1,\ldots,x_k}` denote agent types in the two populations. Consider the following matching mechanism: take a random draw from the `W=w_j` subgroup of the first population and match her with an independent random draw from the `X=x_k` subgroup of the second population. Let `beta(w_j,x_k)`, the average match function (AMF), denote the expected output associated with this match. We show that (i) the AMF is identified when matching is conditionally exogenous, (ii) conditionally exogenous matching is compatible with a pairwise stable aggregate matching equilibrium under specific informational assumptions, and (iii) we calculate the AMF's semiparametric efficiency bound.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w22098 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

March 2016.

Consider two heterogenous populations of agents who, when matched, jointly produce an output, `Y`. For example, teachers and classrooms of students together produce achievement, parents raise children, whose life outcomes vary in adulthood, assembly plant managers and workers produce a certain number of cars per month, and lieutenants and their platoons vary in unit effectiveness. Let `W\in\mathbb{W}={ w_1,\ldots,w_j} and X\in\mathbb{X}={ x_1,\ldots,x_k}` denote agent types in the two populations. Consider the following matching mechanism: take a random draw from the `W=w_j` subgroup of the first population and match her with an independent random draw from the `X=x_k` subgroup of the second population. Let `beta(w_j,x_k)`, the average match function (AMF), denote the expected output associated with this match. We show that (i) the AMF is identified when matching is conditionally exogenous, (ii) conditionally exogenous matching is compatible with a pairwise stable aggregate matching equilibrium under specific informational assumptions, and (iii) we calculate the AMF's semiparametric efficiency bound.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha