Image from Google Jackets

A Tractable Framework for Analyzing a Class of Nonstationary Markov Models / Lilia Maliar, Serguei Maliar, John Taylor, Inna Tsener.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w21155.Publication details: Cambridge, Mass. National Bureau of Economic Research 2015.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We study a class of infinite-horizon nonlinear dynamic economic models in which preferences, technology and laws of motion for exogenous variables can change over time either deterministically or stochastically, according to a Markov process with time-varying transition probabilities, or both. The studied models are nonstationary in the sense that the decision and value functions are time-dependent, and they cannot be generally solved by conventional solution methods. We introduce a quantitative framework, called extended function path (EFP), for calibrating, solving, simulating and estimating such models. We apply EFP to analyze a collection of challenging applications that do not admit stationary Markov equilibria, including growth models with anticipated parameters shifts and drifts, unbalanced growth under capital augmenting technological progress, anticipated regime switches, deterministically time-varying volatility and seasonal fluctuations. Also, we show an example of estimation and calibration of parameters in an unbalanced growth model using data on the U.S. economy. Examples of MATLAB code are provided.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w21155 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

May 2015.

We study a class of infinite-horizon nonlinear dynamic economic models in which preferences, technology and laws of motion for exogenous variables can change over time either deterministically or stochastically, according to a Markov process with time-varying transition probabilities, or both. The studied models are nonstationary in the sense that the decision and value functions are time-dependent, and they cannot be generally solved by conventional solution methods. We introduce a quantitative framework, called extended function path (EFP), for calibrating, solving, simulating and estimating such models. We apply EFP to analyze a collection of challenging applications that do not admit stationary Markov equilibria, including growth models with anticipated parameters shifts and drifts, unbalanced growth under capital augmenting technological progress, anticipated regime switches, deterministically time-varying volatility and seasonal fluctuations. Also, we show an example of estimation and calibration of parameters in an unbalanced growth model using data on the U.S. economy. Examples of MATLAB code are provided.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha