A Tractable Framework for Analyzing a Class of Nonstationary Markov Models / Lilia Maliar, Serguei Maliar, John Taylor, Inna Tsener.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w21155 (Browse shelf(Opens below)) | Not For Loan |
May 2015.
We study a class of infinite-horizon nonlinear dynamic economic models in which preferences, technology and laws of motion for exogenous variables can change over time either deterministically or stochastically, according to a Markov process with time-varying transition probabilities, or both. The studied models are nonstationary in the sense that the decision and value functions are time-dependent, and they cannot be generally solved by conventional solution methods. We introduce a quantitative framework, called extended function path (EFP), for calibrating, solving, simulating and estimating such models. We apply EFP to analyze a collection of challenging applications that do not admit stationary Markov equilibria, including growth models with anticipated parameters shifts and drifts, unbalanced growth under capital augmenting technological progress, anticipated regime switches, deterministically time-varying volatility and seasonal fluctuations. Also, we show an example of estimation and calibration of parameters in an unbalanced growth model using data on the U.S. economy. Examples of MATLAB code are provided.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.