Image from Google Jackets

The Use and Misuse of Models for Climate Policy / Robert S. Pindyck.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w21097.Publication details: Cambridge, Mass. National Bureau of Economic Research 2015.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: In recent articles, I have argued that integrated assessment models (IAMs) have flaws that make them close to useless as tools for policy analysis. IAM-based analyses of climate policy create a perception of knowledge and precision that is illusory, and can fool policy-makers into thinking that the forecasts the models generate have some kind of scientific legitimacy. But some have claimed that we need some kind of model, and that IAMs can be structured and used in ways that correct for their shortcomings. For example, it has been argued that although we know little or nothing about key relationships in the model, we can get around this problem by attaching probability distributions to various parameters and then simulating the model using Monte Carlo methods. I argue that this would buy us nothing, and that a simpler and more transparent approach to the design of climate change policy is preferable. I briefly outline what that approach would look like.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

April 2015.

In recent articles, I have argued that integrated assessment models (IAMs) have flaws that make them close to useless as tools for policy analysis. IAM-based analyses of climate policy create a perception of knowledge and precision that is illusory, and can fool policy-makers into thinking that the forecasts the models generate have some kind of scientific legitimacy. But some have claimed that we need some kind of model, and that IAMs can be structured and used in ways that correct for their shortcomings. For example, it has been argued that although we know little or nothing about key relationships in the model, we can get around this problem by attaching probability distributions to various parameters and then simulating the model using Monte Carlo methods. I argue that this would buy us nothing, and that a simpler and more transparent approach to the design of climate change policy is preferable. I briefly outline what that approach would look like.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha