Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain / Kenneth L. Judd, Lilia Maliar, Serguei Maliar, Rafael Valero.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w19326 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
August 2013.
First, we propose a more efficient implementation of the Smolyak method for interpolation, namely, we show how to avoid costly evaluations of repeated basis functions in the conventional Smolyak formula. Second, we extend the Smolyak method to include anisotropic constructions; this allows us to target higher quality of approximation in some dimensions than in others. Third, we show how to effectively adapt the Smolyak hypercube to a solution domain of a given economic model. Finally, we advocate the use of low-cost fixed-point iteration, instead of conventional time iteration. In the context of one- and multi-agent growth models, we find that the proposed techniques lead to substantial increases in accuracy and speed of a Smolyak-based projection method for solving dynamic economic models.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.