Aggregation of Consumer Ratings: An Application to Yelp.com / Weijia Dai, Ginger Z. Jin, Jungmin Lee, Michael Luca.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w18567 (Browse shelf(Opens below)) | Not For Loan |
November 2012.
Because consumer reviews leverage the wisdom of the crowd, the way in which they are aggregated is a central decision faced by platforms. We explore this "rating aggregation problem" and offer a structural approach to solving it, allowing for (1) reviewers to vary in stringency and accuracy, (2) reviewers to be influenced by existing reviews, and (3) product quality to change over time. Applying this to restaurant reviews from Yelp.com, we construct an adjusted average rating and show that even a simple algorithm can lead to large information efficiency gains relative to the arithmetic average.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.