Dynamic Programming with Hermite Approximation / Yongyang Cai, Kenneth L. Judd.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w18540 (Browse shelf(Opens below)) | Not For Loan |
November 2012.
Numerical dynamic programming algorithms typically use Lagrange data to approximate value functions over continuous states. Hermite data is easily obtained from solving the Bellman equation and can be used to approximate value functions. We illustrate this method with one-, three-, and six-dimensional examples. We find that value function iteration with Hermite approximation improves accuracy by one to three digits using little extra computing time. Moreover, Hermite approximation is significantly faster than Lagrange for the same accuracy, and this advantage increases with dimension.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.