Image from Google Jackets

Dynamic Programming with Hermite Approximation / Yongyang Cai, Kenneth L. Judd.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w18540.Publication details: Cambridge, Mass. National Bureau of Economic Research 2012.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Numerical dynamic programming algorithms typically use Lagrange data to approximate value functions over continuous states. Hermite data is easily obtained from solving the Bellman equation and can be used to approximate value functions. We illustrate this method with one-, three-, and six-dimensional examples. We find that value function iteration with Hermite approximation improves accuracy by one to three digits using little extra computing time. Moreover, Hermite approximation is significantly faster than Lagrange for the same accuracy, and this advantage increases with dimension.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w18540 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

November 2012.

Numerical dynamic programming algorithms typically use Lagrange data to approximate value functions over continuous states. Hermite data is easily obtained from solving the Bellman equation and can be used to approximate value functions. We illustrate this method with one-, three-, and six-dimensional examples. We find that value function iteration with Hermite approximation improves accuracy by one to three digits using little extra computing time. Moreover, Hermite approximation is significantly faster than Lagrange for the same accuracy, and this advantage increases with dimension.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha