Image from Google Jackets

Tipping Points and Ambiguity in the Economics of Climate Change / Derek M. Lemoine, Christian P. Traeger.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w18230.Publication details: Cambridge, Mass. National Bureau of Economic Research 2012.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We model welfare-maximizing policy in an infinite-horizon setting when the probability of a tipping point, the welfare change due to a tipping point, and knowledge about a tipping point's trigger all depend on the policy path. Analytic results demonstrate how optimal policy depends on the ability to affect both the probability of a tipping point and also welfare in a post-threshold world. Simulations with a numerical climate-economy model show that possible tipping points in the climate system increase the optimal near-term carbon tax by up to 45% in base case specifications. The resulting policy paths lower peak warming by up to 0.5°C compared to a model without possible tipping points. Different types of tipping points have qualitatively different effects on policy, demonstrating the importance of explicitly modeling tipping points' effects on system dynamics. Aversion to ambiguity in the threshold's distribution can amplify or dampen the effect of tipping points on optimal policy, but in our numerical model, ambiguity aversion increases the optimal carbon tax.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w18230 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

July 2012.

We model welfare-maximizing policy in an infinite-horizon setting when the probability of a tipping point, the welfare change due to a tipping point, and knowledge about a tipping point's trigger all depend on the policy path. Analytic results demonstrate how optimal policy depends on the ability to affect both the probability of a tipping point and also welfare in a post-threshold world. Simulations with a numerical climate-economy model show that possible tipping points in the climate system increase the optimal near-term carbon tax by up to 45% in base case specifications. The resulting policy paths lower peak warming by up to 0.5°C compared to a model without possible tipping points. Different types of tipping points have qualitatively different effects on policy, demonstrating the importance of explicitly modeling tipping points' effects on system dynamics. Aversion to ambiguity in the threshold's distribution can amplify or dampen the effect of tipping points on optimal policy, but in our numerical model, ambiguity aversion increases the optimal carbon tax.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha