One-node Quadrature Beats Monte Carlo: A Generalized Stochastic Simulation Algorithm / Kenneth Judd, Lilia Maliar, Serguei Maliar.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w16708 (Browse shelf(Opens below)) | Not For Loan |
January 2011.
In conventional stochastic simulation algorithms, Monte Carlo integration and curve fitting are merged together and implemented by means of regression. We perform a decomposition of the solution error and show that regression does a good job in curve fitting but a poor job in integration, which leads to low accuracy of solutions. We propose a generalized notion of stochastic simulation approach in which integration and curve fitting are separated. We specifically allow for the use of deterministic (quadrature and monomial) integration methods which are more accurate than the conventional Monte Carlo method. We achieve accuracy of solutions that is orders of magnitude higher than that of the conventional stochastic simulation algorithms.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.