Image from Google Jackets

One-node Quadrature Beats Monte Carlo: A Generalized Stochastic Simulation Algorithm / Kenneth Judd, Lilia Maliar, Serguei Maliar.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w16708.Publication details: Cambridge, Mass. National Bureau of Economic Research 2011.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: In conventional stochastic simulation algorithms, Monte Carlo integration and curve fitting are merged together and implemented by means of regression. We perform a decomposition of the solution error and show that regression does a good job in curve fitting but a poor job in integration, which leads to low accuracy of solutions. We propose a generalized notion of stochastic simulation approach in which integration and curve fitting are separated. We specifically allow for the use of deterministic (quadrature and monomial) integration methods which are more accurate than the conventional Monte Carlo method. We achieve accuracy of solutions that is orders of magnitude higher than that of the conventional stochastic simulation algorithms.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w16708 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

January 2011.

In conventional stochastic simulation algorithms, Monte Carlo integration and curve fitting are merged together and implemented by means of regression. We perform a decomposition of the solution error and show that regression does a good job in curve fitting but a poor job in integration, which leads to low accuracy of solutions. We propose a generalized notion of stochastic simulation approach in which integration and curve fitting are separated. We specifically allow for the use of deterministic (quadrature and monomial) integration methods which are more accurate than the conventional Monte Carlo method. We achieve accuracy of solutions that is orders of magnitude higher than that of the conventional stochastic simulation algorithms.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha