Image from Google Jackets

A Martingale Representation for Matching Estimators / Alberto Abadie, Guido Imbens.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w14756.Publication details: Cambridge, Mass. National Bureau of Economic Research 2009.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Matching estimators (Rubin, 1973a, 1977; Rosenbaum, 2002) are widely used in statistical data analysis. However, the large sample distribution of matching estimators has been derived only for particular cases (Abadie and Imbens, 2006). This article establishes a martingale representation for matching estimators. This representation allows the use of martingale limit theorems to derive the large sample distribution of matching estimators. As an illustration of the applicability of the theory, we derive the asymptotic distribution of a matching estimator when matching is carried out without replacement, a result previously unavailable in the literature. In addition, we apply the techniques proposed in this article to derive a correction to the standard error of a sample mean when missing data are imputed using the "hot deck", a matching imputation method widely used in the Current Population Survey (CPS) and other large surveys in the social sciences. We demonstrate the empirical relevance of our methods using two Monte Carlo designs based on actual data sets. In these realistic Monte Carlo exercises the large sample distribution of matching estimators derived in this article provides an accurate approximation to the small sample behavior of these estimators. In addition, our simulations show that standard errors that do not take into account hot deck imputation of missing data may be severely downward biased, while standard errors that incorporate the correction proposed in this article for hot deck imputation perform extremely well. This result demonstrates the practical relevance of the standard error correction for the hot deck proposed in this article.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

February 2009.

Matching estimators (Rubin, 1973a, 1977; Rosenbaum, 2002) are widely used in statistical data analysis. However, the large sample distribution of matching estimators has been derived only for particular cases (Abadie and Imbens, 2006). This article establishes a martingale representation for matching estimators. This representation allows the use of martingale limit theorems to derive the large sample distribution of matching estimators. As an illustration of the applicability of the theory, we derive the asymptotic distribution of a matching estimator when matching is carried out without replacement, a result previously unavailable in the literature. In addition, we apply the techniques proposed in this article to derive a correction to the standard error of a sample mean when missing data are imputed using the "hot deck", a matching imputation method widely used in the Current Population Survey (CPS) and other large surveys in the social sciences. We demonstrate the empirical relevance of our methods using two Monte Carlo designs based on actual data sets. In these realistic Monte Carlo exercises the large sample distribution of matching estimators derived in this article provides an accurate approximation to the small sample behavior of these estimators. In addition, our simulations show that standard errors that do not take into account hot deck imputation of missing data may be severely downward biased, while standard errors that incorporate the correction proposed in this article for hot deck imputation perform extremely well. This result demonstrates the practical relevance of the standard error correction for the hot deck proposed in this article.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha