Image from Google Jackets

The Perils of the Learning Model For Modeling Endogenous Technological Change / William D. Nordhaus.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w14638.Publication details: Cambridge, Mass. National Bureau of Economic Research 2009.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Learning or experience curves are widely used to estimate cost functions in manufacturing modeling. They have recently been introduced in policy models of energy and global warming economics to make the process of technological change endogenous. It is not widely appreciated that this is a dangerous modeling strategy. The present note has three points. First, it shows that there is a fundamental statistical identification problem in trying to separate learning from exogenous technological change and that the estimated learning coefficient will generally be biased upwards. Second, we present two empirical tests that illustrate the potential bias in practice and show that learning parameters are not robust to alternative specifications. Finally, we show that an overestimate of the learning coefficient will provide incorrect estimates of the total marginal cost of output and will therefore bias optimization models to tilt toward technologies that are incorrectly specified as having high learning coefficients.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w14638 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

January 2009.

Learning or experience curves are widely used to estimate cost functions in manufacturing modeling. They have recently been introduced in policy models of energy and global warming economics to make the process of technological change endogenous. It is not widely appreciated that this is a dangerous modeling strategy. The present note has three points. First, it shows that there is a fundamental statistical identification problem in trying to separate learning from exogenous technological change and that the estimated learning coefficient will generally be biased upwards. Second, we present two empirical tests that illustrate the potential bias in practice and show that learning parameters are not robust to alternative specifications. Finally, we show that an overestimate of the learning coefficient will provide incorrect estimates of the total marginal cost of output and will therefore bias optimization models to tilt toward technologies that are incorrectly specified as having high learning coefficients.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha