Image from Google Jackets

Macroeconomics and ARCH / James D. Hamilton.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w14151.Publication details: Cambridge, Mass. National Bureau of Economic Research 2008.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Although ARCH-related models have proven quite popular in finance, they are less frequently used in macroeconomic applications. In part this may be because macroeconomists are usually more concerned about characterizing the conditional mean rather than the conditional variance of a time series. This paper argues that even if one's interest is in the conditional mean, correctly modeling the conditional variance can still be quite important, for two reasons. First, OLS standard errors can be quite misleading, with a "spurious regression" possibility in which a true null hypothesis is asymptotically rejected with probability one. Second, the inference about the conditional mean can be inappropriately influenced by outliers and high-variance episodes if one has not incorporated the conditional variance directly into the estimation of the mean, and infinite relative efficiency gains may be possible. The practical relevance of these concerns is illustrated with two empirical examples from the macroeconomics literature, the first looking at market expectations of future changes in Federal Reserve policy, and the second looking at changes over time in the Fed's adherence to a Taylor Rule.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

June 2008.

Although ARCH-related models have proven quite popular in finance, they are less frequently used in macroeconomic applications. In part this may be because macroeconomists are usually more concerned about characterizing the conditional mean rather than the conditional variance of a time series. This paper argues that even if one's interest is in the conditional mean, correctly modeling the conditional variance can still be quite important, for two reasons. First, OLS standard errors can be quite misleading, with a "spurious regression" possibility in which a true null hypothesis is asymptotically rejected with probability one. Second, the inference about the conditional mean can be inappropriately influenced by outliers and high-variance episodes if one has not incorporated the conditional variance directly into the estimation of the mean, and infinite relative efficiency gains may be possible. The practical relevance of these concerns is illustrated with two empirical examples from the macroeconomics literature, the first looking at market expectations of future changes in Federal Reserve policy, and the second looking at changes over time in the Fed's adherence to a Taylor Rule.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha