Structural Uncertainty and the Value of Statistical Life in the Economics of Catastrophic Climate Change / Martin Weitzman.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w13490 (Browse shelf(Opens below)) | Not For Loan |
October 2007.
Using climate change as a prototype motivating example, this paper analyzes the implications of structural uncertainty for the economics of low-probability high-impact catastrophes. The paper shows that having an uncertain multiplicative parameter, which scales or amplifies exogenous shocks and is updated by Bayesian learning, induces a critical "tail fattening" of posterior-predictive distributions. These fattened tails can have strong implications for situations (like climate change) where a catastrophe is theoretically possible because prior knowledge cannot place sufficiently narrow bounds on overall damages. The essence of the problem is the difficulty of learning extreme-impact tail behavior from finite data alone. At least potentially, the influence on cost-benefit analysis of fat-tailed uncertainty about the scale of damages -- coupled with a high value of statistical life -- can outweigh the influence of discounting or anything else.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.