Image from Google Jackets

Structural Uncertainty and the Value of Statistical Life in the Economics of Catastrophic Climate Change / Martin Weitzman.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w13490.Publication details: Cambridge, Mass. National Bureau of Economic Research 2007.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: Using climate change as a prototype motivating example, this paper analyzes the implications of structural uncertainty for the economics of low-probability high-impact catastrophes. The paper shows that having an uncertain multiplicative parameter, which scales or amplifies exogenous shocks and is updated by Bayesian learning, induces a critical "tail fattening" of posterior-predictive distributions. These fattened tails can have strong implications for situations (like climate change) where a catastrophe is theoretically possible because prior knowledge cannot place sufficiently narrow bounds on overall damages. The essence of the problem is the difficulty of learning extreme-impact tail behavior from finite data alone. At least potentially, the influence on cost-benefit analysis of fat-tailed uncertainty about the scale of damages -- coupled with a high value of statistical life -- can outweigh the influence of discounting or anything else.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w13490 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

October 2007.

Using climate change as a prototype motivating example, this paper analyzes the implications of structural uncertainty for the economics of low-probability high-impact catastrophes. The paper shows that having an uncertain multiplicative parameter, which scales or amplifies exogenous shocks and is updated by Bayesian learning, induces a critical "tail fattening" of posterior-predictive distributions. These fattened tails can have strong implications for situations (like climate change) where a catastrophe is theoretically possible because prior knowledge cannot place sufficiently narrow bounds on overall damages. The essence of the problem is the difficulty of learning extreme-impact tail behavior from finite data alone. At least potentially, the influence on cost-benefit analysis of fat-tailed uncertainty about the scale of damages -- coupled with a high value of statistical life -- can outweigh the influence of discounting or anything else.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha