Stochastic Infinite Horizon Forecasts for Social Security and Related Studies / Ronald Lee, Timothy Miller, Michael Anderson.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w10917 (Browse shelf(Opens below)) | Not For Loan |
November 2004.
This paper consists of three reports on stochastic forecasting for Social Security, on infinite horizons, immigration, and structural time series models. 1) In our preferred stochastic immigration forecast, total net immigration drops from current levels down to about one million by 2020, then slowly rises to 1.2 million at the end of the century, with 95% probability bounds of 800,000 to 1.8 million at the century's end. Adding stochastic immigration makes little difference to the probability distribution of the old age dependency ratio. 2) We incorporate parameter uncertainty, stochastic trends, and uncertain ultimate levels in stochastic models of wage growth and fertility. These changes sometimes substantially affect the probability distributions of the individual input forecasts, but they make relatively little difference when embedded in the more fully stochastic Social Security projection. 3) Using a 500-year stochastic projection, we estimate an infinite horizon balance of -5.15% of payroll, compared to the -3.5% of the 2004 Trustees Report, probably reflecting different mortality projections. Our 95% probability interval bounds are -10.5 and -1.3%. Such forecasts, which reflect only "routine" uncertainty, have many problems but nonetheless seem worthwhile.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.