Identification and Estimation of Discrete Games of Complete Information / Patrick Bajari, Han Hong, Stephen Ryan.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber t0301 (Browse shelf(Opens below)) | Not For Loan |
October 2004.
We discuss the identification and estimation of discrete games of complete information. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of a standard discrete choice model where utility depends on the actions of other players. Using recent algorithms to compute all of the Nash equilibria to a game, we propose simulation-based estimators for static, discrete games. With appropriate exclusion restrictions about how covariates enter into payoffs and influence equilibrium selection, the model is identified with only weak parametric assumptions. Monte Carlo evidence demonstrates that the estimator can perform well in moderately-sized samples. As an application, we study the strategic decision of firms in spatially-separated markets to establish a presence on the Internet.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.