Image from Google Jackets

Small Noise Asymptotics for a Stochastic Growth Model / Noah Williams.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w10194.Publication details: Cambridge, Mass. National Bureau of Economic Research 2003.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We develop analytic asymptotic methods to characterize time series properties of nonlinear dynamic stochastic models. We focus on a stochastic growth model which is representative of the models underlying much of modern macroeconomics. Taking limits as the stochastic shocks become small, we derive a functional central limit theorem, a large deviation principle, and a moderate deviation principle. These allow us to calculate analytically the asymptotic distribution of the capital stock, and to obtain bounds on the probability that the log of the capital stock will differ from its deterministic steady state level by a given amount. This latter result can be applied to characterize the probability and frequency of large business cycles. We then illustrate our theoretical results through some simulations. We find that our results do a good job of characterizing the model economy, both in terms of its average behavior and its occasional large cyclical fluctuations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

December 2003.

We develop analytic asymptotic methods to characterize time series properties of nonlinear dynamic stochastic models. We focus on a stochastic growth model which is representative of the models underlying much of modern macroeconomics. Taking limits as the stochastic shocks become small, we derive a functional central limit theorem, a large deviation principle, and a moderate deviation principle. These allow us to calculate analytically the asymptotic distribution of the capital stock, and to obtain bounds on the probability that the log of the capital stock will differ from its deterministic steady state level by a given amount. This latter result can be applied to characterize the probability and frequency of large business cycles. We then illustrate our theoretical results through some simulations. We find that our results do a good job of characterizing the model economy, both in terms of its average behavior and its occasional large cyclical fluctuations.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha