Image from Google Jackets

Estimating Euler Equations / Orazio P. Attanasio, Hamish Low.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0253.Publication details: Cambridge, Mass. National Bureau of Economic Research 2000.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: In this paper we consider conditions under which the estimation of a log-linearized Euler equation for consumption yields consistent estimates of the preference parameters. When utility is isoelastic and a sample covering a long time period is available, consistent estimates are obtained from the log-linearized Euler equation when the innovations to the conditional variance of consumption growth are uncorrelated with the instruments typically used in estimation. We perform a Montecarlo experiment, consisting in solving and simulating a simple life cycle model under uncertainty, and show that in most situations, the estimates obtained from the log-linearized equation are not systematically biased. This is true even when we introduce heteroscedasticity in the process generating income. The only exception is when discount rates are very high (47% per year). This problem arises because consumers are nearly always close to the maximum borrowing limit: the estimation bias is unrelated to the linearization. Finally, we plot life cycle profiles for the variance of consumption growth, which, except when the discount factor is very high, is remarkably flat. This implies that claims that demographic variables in log-linearized Euler equations capture changes in the variance of consumption growth are unwarranted.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

May 2000.

In this paper we consider conditions under which the estimation of a log-linearized Euler equation for consumption yields consistent estimates of the preference parameters. When utility is isoelastic and a sample covering a long time period is available, consistent estimates are obtained from the log-linearized Euler equation when the innovations to the conditional variance of consumption growth are uncorrelated with the instruments typically used in estimation. We perform a Montecarlo experiment, consisting in solving and simulating a simple life cycle model under uncertainty, and show that in most situations, the estimates obtained from the log-linearized equation are not systematically biased. This is true even when we introduce heteroscedasticity in the process generating income. The only exception is when discount rates are very high (47% per year). This problem arises because consumers are nearly always close to the maximum borrowing limit: the estimation bias is unrelated to the linearization. Finally, we plot life cycle profiles for the variance of consumption growth, which, except when the discount factor is very high, is remarkably flat. This implies that claims that demographic variables in log-linearized Euler equations capture changes in the variance of consumption growth are unwarranted.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha