Image from Google Jackets

When to Control for Covariates? Panel-Asymptotic Results for Estimates of Treatment Effects / Joshua D. Angrist, Jinyong Hahn.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0241.Publication details: Cambridge, Mass. National Bureau of Economic Research 1999.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: The problem of how to control for covariates is endemic in evaluation research. Covariate-matching provides an appealing control strategy, but with continuous or high-dimensional covariate vectors, exact matching may be impossible or involve small cells. Matching observations that have the same propensity score produces unbiased estimates of causal effects whenever covariate-matching does, and also has an attractive dimension-reducing property. On the other hand, conventional asymptotic arguments show that covariate-matching is (asymptotically) more efficient that propensity score-matching. This is because the usual asymptotic sequence has cell sizes growing to infinity, with no benefit from reducing the number of cells. Here, we approximate the large sample behavior of difference matching estimators using a panel-style asymptotic sequence with fixed cell sizes and the number of cells increasing to infinity. Exact calculations in simple examples and Monte Carlo evidence suggests this generates a substantially improved approximation to actual finite-sample distributions. Under this sequence, propensity-score-matching is most likely to dominate exact matching when cell sizes are small, the explanatory power of the covariates conditional on the propensity score is low, and/or the probability of treatment is close to zero or one. Finally, we introduce a random-effects type combination estimator that provides finite-sample efficiency gains over both covariate-matching and propensity-score-matching.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber t0241 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

May 1999.

The problem of how to control for covariates is endemic in evaluation research. Covariate-matching provides an appealing control strategy, but with continuous or high-dimensional covariate vectors, exact matching may be impossible or involve small cells. Matching observations that have the same propensity score produces unbiased estimates of causal effects whenever covariate-matching does, and also has an attractive dimension-reducing property. On the other hand, conventional asymptotic arguments show that covariate-matching is (asymptotically) more efficient that propensity score-matching. This is because the usual asymptotic sequence has cell sizes growing to infinity, with no benefit from reducing the number of cells. Here, we approximate the large sample behavior of difference matching estimators using a panel-style asymptotic sequence with fixed cell sizes and the number of cells increasing to infinity. Exact calculations in simple examples and Monte Carlo evidence suggests this generates a substantially improved approximation to actual finite-sample distributions. Under this sequence, propensity-score-matching is most likely to dominate exact matching when cell sizes are small, the explanatory power of the covariates conditional on the propensity score is low, and/or the probability of treatment is close to zero or one. Finally, we introduce a random-effects type combination estimator that provides finite-sample efficiency gains over both covariate-matching and propensity-score-matching.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha