Image from Google Jackets

Approximation Bias in Linearized Euler Equations / Sydney Ludvigson, Christina H. Paxson.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0236.Publication details: Cambridge, Mass. National Bureau of Economic Research 1999.Description: 1 online resource: illustrations (black and white)Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: A wide range of empirical applications rely on linear approximations to dynamic Euler equations. Among the most notable of these is the large and growing literature on precautionary saving that examines how consumption growth and saving behavior are affected by uncertainty and prudence. Linear approximations to Euler equations imply a linear relationship between expected consumption growth and uncertainty in consumption growth, with a slope coefficient that is a function of the coefficient of relative prudence. This literature has produced puzzling results: Estimates of the coefficient of relative prudence (and the coefficient of relative risk aversion) from regressions of consumption growth on uncertainty in consumption growth imply estimates of prudence and risk aversion that are unrealistically low. Using numerical solutions to a fairly standard intertemporal optimization problem, our results show that the actual relationship between expected consumption growth and uncertainty in consumption growth differs substantially from the relationship implied by a linear approximation. We also present Monte Carlo evidence that shows that the instrumental variables methods commonly used to estimate the parameters correct some, but not all, of the approximation bias.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber t0236 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

March 1999.

A wide range of empirical applications rely on linear approximations to dynamic Euler equations. Among the most notable of these is the large and growing literature on precautionary saving that examines how consumption growth and saving behavior are affected by uncertainty and prudence. Linear approximations to Euler equations imply a linear relationship between expected consumption growth and uncertainty in consumption growth, with a slope coefficient that is a function of the coefficient of relative prudence. This literature has produced puzzling results: Estimates of the coefficient of relative prudence (and the coefficient of relative risk aversion) from regressions of consumption growth on uncertainty in consumption growth imply estimates of prudence and risk aversion that are unrealistically low. Using numerical solutions to a fairly standard intertemporal optimization problem, our results show that the actual relationship between expected consumption growth and uncertainty in consumption growth differs substantially from the relationship implied by a linear approximation. We also present Monte Carlo evidence that shows that the instrumental variables methods commonly used to estimate the parameters correct some, but not all, of the approximation bias.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha