Image from Google Jackets

Combining Panel Data Sets with Attrition and Refreshment Samples / Keisuke Hirano, Guido W. Imbens, Geert Ridder, Donald B. Rebin.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0230.Publication details: Cambridge, Mass. National Bureau of Economic Research 1998.Description: 1 online resource: illustrations (black and white)Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: In many fields researchers wish to consider statistical models that allow for more complex relationships than can be inferred using only cross-sectional data. Panel or longitudinal data where the same units are observed repeatedly at different points in time can often provide the richer data needed for such models. Although such data allows researchers to identify more complex models than cross-sectional data, missing data problems can be more severe in panels. In particular, even units who respond in initial waves of the panel may drop out in subsequent waves, so that the subsample with complete data for all waves of the panel can be less representative of the population than the original sample. Sometimes, in the hope of mitigating the effects of attrition without losing the advantages of panel data over cross-sections, panel data sets are augmented by replacing units who have dropped out with new units randomly sampled from the original population. Following Ridder (1992), who used these replacement units to test some models for attrition, we call such additional samples refreshment samples. We explore the benefits of these samples for estimating models of attrition. We describe the manner in which the presence of refreshment samples allows the researcher to test various models for attrition in panel data, including models based on the assumption that missing data are missing at random (MAR, Rubin, 1976; Little and Rubin, 1987). The main result in the paper makes precise the extent to which refreshment samples are informative about the attrition process; a class of non-ignorable missing data models can be identified without making strong distributional or functional form assumptions if refreshment samples are available.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber t0230 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

April 1998.

In many fields researchers wish to consider statistical models that allow for more complex relationships than can be inferred using only cross-sectional data. Panel or longitudinal data where the same units are observed repeatedly at different points in time can often provide the richer data needed for such models. Although such data allows researchers to identify more complex models than cross-sectional data, missing data problems can be more severe in panels. In particular, even units who respond in initial waves of the panel may drop out in subsequent waves, so that the subsample with complete data for all waves of the panel can be less representative of the population than the original sample. Sometimes, in the hope of mitigating the effects of attrition without losing the advantages of panel data over cross-sections, panel data sets are augmented by replacing units who have dropped out with new units randomly sampled from the original population. Following Ridder (1992), who used these replacement units to test some models for attrition, we call such additional samples refreshment samples. We explore the benefits of these samples for estimating models of attrition. We describe the manner in which the presence of refreshment samples allows the researcher to test various models for attrition in panel data, including models based on the assumption that missing data are missing at random (MAR, Rubin, 1976; Little and Rubin, 1987). The main result in the paper makes precise the extent to which refreshment samples are informative about the attrition process; a class of non-ignorable missing data models can be identified without making strong distributional or functional form assumptions if refreshment samples are available.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha