Image from Google Jackets

Taming the Skew: Higher-Order Moments in Modeling Asset Price Processes in Finance / Sanjiv Ranjan Das, Rangarajan K. Sundaram.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w5976.Publication details: Cambridge, Mass. National Bureau of Economic Research 1997.Description: 1 online resource: illustrations (black and white)Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: It is widely acknowledged that many financial markets exhibit a considerably greater degree of kurtosis (and sometimes also skewness) than is consistent with the Geometric Brownian Motion model of Black and Scholes (1973). Among the many alternative models that have been proposed in this context, two have become especially popular in recent years: models of jump-diffusions, and models of stochastic volatility. This paper explores the statistical properties of these models with a view to identifying simple criteria for judging the consistency of either model with data from a given market; our specific focus is on the patterns of skewness and kurtosis that arise in each case as the length of the interval of observations changes. We find that, regardless of the precise parameterization employed, these patterns are strikingly similar within each class of models, enabling a simple consistency test along the desired lines. As an added bonus, we find that for most parameterizations, the set of possible patterns differs sharply across the two models, so that data from a given market will typically not be consistent with both models. However, there exist exceptional parameter configurations under which skewness and kurtosis in the two models exhibit remarkably similar behavior from a qualitative standpoint. The results herein will be useful to empiricists, theorists and practitioners looking for parsimonious models of asset prices.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w5976 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

March 1997.

It is widely acknowledged that many financial markets exhibit a considerably greater degree of kurtosis (and sometimes also skewness) than is consistent with the Geometric Brownian Motion model of Black and Scholes (1973). Among the many alternative models that have been proposed in this context, two have become especially popular in recent years: models of jump-diffusions, and models of stochastic volatility. This paper explores the statistical properties of these models with a view to identifying simple criteria for judging the consistency of either model with data from a given market; our specific focus is on the patterns of skewness and kurtosis that arise in each case as the length of the interval of observations changes. We find that, regardless of the precise parameterization employed, these patterns are strikingly similar within each class of models, enabling a simple consistency test along the desired lines. As an added bonus, we find that for most parameterizations, the set of possible patterns differs sharply across the two models, so that data from a given market will typically not be consistent with both models. However, there exist exceptional parameter configurations under which skewness and kurtosis in the two models exhibit remarkably similar behavior from a qualitative standpoint. The results herein will be useful to empiricists, theorists and practitioners looking for parsimonious models of asset prices.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha