A Practitioner's Guide to Robust Covariance Matrix Estimation / Wouter J. Den Haan, Andrew T. Levin.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber t0197 (Browse shelf(Opens below)) | Not For Loan |
June 1996.
This paper develops asymptotic distribution theory for generalized method of moments (GMM) estimators and test statistics when some of the parameters are well identified, but others are poorly identified because of weak instruments. The asymptotic theory entails applying empirical process theory to obtain a limiting representation of the (concentrated) objective function as a stochastic process. The general results are specialized to two leading cases, linear instrumental variables regression and GMM estimation of Euler equations obtained from the consumption-based capital asset pricing model with power utility. Numerical results of the latter model confirm that finite sample distributions can deviate substantially from normality, and indicate that these deviations are captured by the weak instruments asymptotic approximations.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.