Image from Google Jackets

A Practitioner's Guide to Robust Covariance Matrix Estimation / Wouter J. Den Haan, Andrew T. Levin.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0197.Publication details: Cambridge, Mass. National Bureau of Economic Research 1996.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: This paper develops asymptotic distribution theory for generalized method of moments (GMM) estimators and test statistics when some of the parameters are well identified, but others are poorly identified because of weak instruments. The asymptotic theory entails applying empirical process theory to obtain a limiting representation of the (concentrated) objective function as a stochastic process. The general results are specialized to two leading cases, linear instrumental variables regression and GMM estimation of Euler equations obtained from the consumption-based capital asset pricing model with power utility. Numerical results of the latter model confirm that finite sample distributions can deviate substantially from normality, and indicate that these deviations are captured by the weak instruments asymptotic approximations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber t0197 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

June 1996.

This paper develops asymptotic distribution theory for generalized method of moments (GMM) estimators and test statistics when some of the parameters are well identified, but others are poorly identified because of weak instruments. The asymptotic theory entails applying empirical process theory to obtain a limiting representation of the (concentrated) objective function as a stochastic process. The general results are specialized to two leading cases, linear instrumental variables regression and GMM estimation of Euler equations obtained from the consumption-based capital asset pricing model with power utility. Numerical results of the latter model confirm that finite sample distributions can deviate substantially from normality, and indicate that these deviations are captured by the weak instruments asymptotic approximations.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha