Spectral Based Testing of the Martingale Hypothesis / Steven N. Durlauf.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber t0090 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
April 1992.
This paper proposes a method of testing whether a time series is a martingale. The procedure develops an asymptotic theory for the shape of the spectral distribution function of the first differences. Under the null hypothesis, this shape should be a diagonal line. several tests are developed which determine whether the deviation of the sample spectral distribution function from a diagonal line, when treated as an element of a function space, is too erratic to be attributable to sampling error. These tests are consistent against all moving average alternatives. The testing procedure possesses the additional advantage that it eliminates discretion in choosing a particular H[sub 1] by the researcher and therefore guards against data mining, The tests may further be adjusted to analyze subsets of frequencies in isolation, which can enhance power against particular alternatives. Application of the test to stock prices finds some evidence against the random walk theory.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.