Transitional Dynamics in Two-Sector Models of Endogenous Growth / Casey B. Mulligan, Xavier Sala-i-Martin.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w3986 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
February 1992.
The steady state and transitional dynamics of two-sector models of endogenous growth are analyzed in this paper. We describe necessary conditions for endogenous growth. The conditions allow us to reduce the dynamics of the solution to a system with one state-like and two control-like variables. We analyze the determinants of the long run growth rate. We use the Time-Elimination Method to analyze the transitional dynamics of the models. We find that there are transitions in real time if the point-in-time production possibility frontier is strictly concave, which occurs, for example, if the two production functions are different or if there are decreasing point-in-time returns in any of the sectors. We also show that if the models have a transition in real time, the models are globally saddle path stable. We find that the wealth or consumption smoothing effect tends to dominate the substitution or real wage effect so that the transition from relatively low levels of physical capital is carried over through high work effort rather than high savings. We develop some empirical implications. We show that the models predict conditional convergence in that, in a cross section, the growth rate is predicted to be negatively related to initial income but only after some measure of human capital is held constant. Thus, the models are consistent with existing empirical cross country evidence.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.