Image from Google Jackets

Testing The Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions / Robert E. Cumby, John Huizinga.

By: Contributor(s): Material type: TextTextSeries: Technical Working Paper Series (National Bureau of Economic Research) ; no. t0092.Publication details: Cambridge, Mass. National Bureau of Economic Research 1990.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: This paper derives the asymptotic distribution for a vector of sample autocorrelations of regression residuals from a quite general linear model. The asymptotic distribution forms the basis for a test of the null hypothesis that the regression error follows a moving average of order q [greaterthan or equal] 0 against the general alternative that autocorrelations of the regression error are non-zero at lags greater than q. By allowing for endogenous, predetermined and/or exogenous regressors, for estimation by either ordinary least squares or a number of instrumental variables techniques, for the case q>0, and for a conditionally heteroscedastic error term, the test described here is applicable in a variety of situations where such popular tests as the Box-Pierce (1970) test, Durbin's (1970) h test, and Godfrey's (1978b) Lagrange multiplier test are net applicable. The finite sample properties of the test are examined in Monte Carlo simulations where, with a sample sizes of 50 and 100 observations, the test appears to be quite reliable.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber t0092 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

October 1990.

This paper derives the asymptotic distribution for a vector of sample autocorrelations of regression residuals from a quite general linear model. The asymptotic distribution forms the basis for a test of the null hypothesis that the regression error follows a moving average of order q [greaterthan or equal] 0 against the general alternative that autocorrelations of the regression error are non-zero at lags greater than q. By allowing for endogenous, predetermined and/or exogenous regressors, for estimation by either ordinary least squares or a number of instrumental variables techniques, for the case q>0, and for a conditionally heteroscedastic error term, the test described here is applicable in a variety of situations where such popular tests as the Box-Pierce (1970) test, Durbin's (1970) h test, and Godfrey's (1978b) Lagrange multiplier test are net applicable. The finite sample properties of the test are examined in Monte Carlo simulations where, with a sample sizes of 50 and 100 observations, the test appears to be quite reliable.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha