The Pricing of Short-Lived Options When Price Uncertainty Is Log-Symmetric Stable / J. Huston McCulloch.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w0264 (Browse shelf(Opens below)) | Not For Loan |
July 1978.
The well-known option pricing formula of Black and Scholes depends upon the assumption that price fluctuations are log-normal. However, this formula greatly underestimates the value of options with a low probability of being exercised if, as appears to be more nearly the case in most markets, price fluctuations are in fact symmetrics table or log-symmetric stable. This paper derives a general formula for the value of a put or call option in a general equilibrium, expected utility maximization context. This general formula is found to yield the Black-Scholes formula for a wide variety of underlying processes generating log-normal price uncertainty. It is then used to derive the value of a short-lived option for certain processes that generate log-symmetric stable price uncertainty. Our analysis is restricted to short-lived options for reasons of mathematical tractability. Nevertheless, the formula is useful for evaluating many types of risk.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.