Image from Google Jackets

The Pricing of Short-Lived Options When Price Uncertainty Is Log-Symmetric Stable / J. Huston McCulloch.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w0264.Publication details: Cambridge, Mass. National Bureau of Economic Research 1978.Description: 1 online resource: illustrations (black and white)Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: The well-known option pricing formula of Black and Scholes depends upon the assumption that price fluctuations are log-normal. However, this formula greatly underestimates the value of options with a low probability of being exercised if, as appears to be more nearly the case in most markets, price fluctuations are in fact symmetrics table or log-symmetric stable. This paper derives a general formula for the value of a put or call option in a general equilibrium, expected utility maximization context. This general formula is found to yield the Black-Scholes formula for a wide variety of underlying processes generating log-normal price uncertainty. It is then used to derive the value of a short-lived option for certain processes that generate log-symmetric stable price uncertainty. Our analysis is restricted to short-lived options for reasons of mathematical tractability. Nevertheless, the formula is useful for evaluating many types of risk.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w0264 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

July 1978.

The well-known option pricing formula of Black and Scholes depends upon the assumption that price fluctuations are log-normal. However, this formula greatly underestimates the value of options with a low probability of being exercised if, as appears to be more nearly the case in most markets, price fluctuations are in fact symmetrics table or log-symmetric stable. This paper derives a general formula for the value of a put or call option in a general equilibrium, expected utility maximization context. This general formula is found to yield the Black-Scholes formula for a wide variety of underlying processes generating log-normal price uncertainty. It is then used to derive the value of a short-lived option for certain processes that generate log-symmetric stable price uncertainty. Our analysis is restricted to short-lived options for reasons of mathematical tractability. Nevertheless, the formula is useful for evaluating many types of risk.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha