A Conic Algorithm for the Group Minimization Problem / Bruno Simeone.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w0159 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
December 1976.
A new algorithm for the group minimization problem (GP) is proposed. The algorithm can be broadly described as follows. A suitable relaxation of(GP) is defined, in which any feasible point satisfies the group equation but may have negative components. The feasible points of the relaxation are then generated in order of ascending costs by a variant of a well-known algorithm of Glover, and checked for non-negativity. The first non-negative point is an optimal solution of (GP). Advantages and disadvantages of the algorithm are discussed; in particular, the implementation of the algorithm (which can be easily extended so as to solve integer linear programming problems) does not require group arithmetics.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.