The Maximum Likelihood Stage Least Squares Estimator in the Nonlinear Simultaneous Equations Model / Takeshi Amemiya.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w0090 (Browse shelf(Opens below)) | Not For Loan |
Collection: Colección NBER Close shelf browser (Hides shelf browser)
June 1975.
The consistency and the asymptotic normality of the maximum likelihood estimator in the general nonlinear simultaneous equation model are proved. It is shown that the proof depends on the assumption of normality unlike in the linear simultaneous equation model. It is proved that the maximum likelihood estimator is asymptotically more efficient than the nonlinear three-stage least squares estimator if the specification is correct, However, the latter has the advantage of being consistent even when the normality assumption is removed. Hausrnan' s instrumental-variable-interpretation of the maximum likelihood estimator is extended to the general nonlinear simultaneous equation model.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.