Image from Google Jackets

Semiparametric Estimation of Treatment Effects in Randomized Experiments / Susan Athey, Peter J. Bickel, Aiyou Chen, Guido Imbens, Michael Pollmann.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w29242.Publication details: Cambridge, Mass. National Bureau of Economic Research 2021.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely random. This setting is of particular interest in recent experimentation in tech companies. We propose using parametric models for the treatment effects, as opposed to parametric models for the full outcome distributions. This leads to semiparametric models for the outcome distributions. We derive the semiparametric efficiency bound for this setting, and propose efficient estimators. In the case with a constant treatment effect one of the proposed estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to (minus) the second derivative of the log of the density of the potential outcomes. Our analysis also results in an extension of Huber's model and trimmed mean to include asymmetry and a simplified condition on linear combinations of order statistics, which may be of independent interest.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

September 2021.

We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely random. This setting is of particular interest in recent experimentation in tech companies. We propose using parametric models for the treatment effects, as opposed to parametric models for the full outcome distributions. This leads to semiparametric models for the outcome distributions. We derive the semiparametric efficiency bound for this setting, and propose efficient estimators. In the case with a constant treatment effect one of the proposed estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to (minus) the second derivative of the log of the density of the potential outcomes. Our analysis also results in an extension of Huber's model and trimmed mean to include asymmetry and a simplified condition on linear combinations of order statistics, which may be of independent interest.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha