Image from Google Jackets

Addressing Endogeneity Using a Two-stage Copula Generated Regressor Approach / Fan Yang, Yi Qian, Hui Xie.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w29708.Publication details: Cambridge, Mass. National Bureau of Economic Research 2022.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: A prominent challenge when drawing causal inference using observational data is the ubiquitous presence of endogenous regressors. The classical econometric method to handle regressor endogeneity requires instrumental variables that must satisfy the stringent condition of exclusion restriction, making it infeasible to use in many settings. We propose new instrument-free methods using copulas to address the endogeneity problem. The existing copula correction method focuses only on the endogenous regressors and may yield biased estimates when exogenous and endogenous regressors are correlated. Furthermore, (nearly) normally distributed endogenous regressors cause model non-identification or finite-sample poor performance. Our proposed two-stage copula endogeneity correction (2sCOPE) method simultaneously overcomes the two key limitations and yields consistent causal-effect estimates with correlated endogenous and exogenous regressors as well as normally distributed endogenous regressors. 2sCOPE employs generated regressors derived from existing regressors to control for endogeneity, and is straightforward to use and broadly applicable. Moreover, we prove that exploiting correlated exogenous regressors can address the problem of insufficient regressor non-normality, relax identification requirements and improve estimation precision (by as much as ∼50% in empirical evaluation). Overall, 2sCOPE can greatly increase the ease of and broaden the applicability of instrument-free methods for dealing with regressor endogeneity. We demonstrate the performance of 2sCOPE via simulation studies and an empirical application.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w29708 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

January 2022.

A prominent challenge when drawing causal inference using observational data is the ubiquitous presence of endogenous regressors. The classical econometric method to handle regressor endogeneity requires instrumental variables that must satisfy the stringent condition of exclusion restriction, making it infeasible to use in many settings. We propose new instrument-free methods using copulas to address the endogeneity problem. The existing copula correction method focuses only on the endogenous regressors and may yield biased estimates when exogenous and endogenous regressors are correlated. Furthermore, (nearly) normally distributed endogenous regressors cause model non-identification or finite-sample poor performance. Our proposed two-stage copula endogeneity correction (2sCOPE) method simultaneously overcomes the two key limitations and yields consistent causal-effect estimates with correlated endogenous and exogenous regressors as well as normally distributed endogenous regressors. 2sCOPE employs generated regressors derived from existing regressors to control for endogeneity, and is straightforward to use and broadly applicable. Moreover, we prove that exploiting correlated exogenous regressors can address the problem of insufficient regressor non-normality, relax identification requirements and improve estimation precision (by as much as ∼50% in empirical evaluation). Overall, 2sCOPE can greatly increase the ease of and broaden the applicability of instrument-free methods for dealing with regressor endogeneity. We demonstrate the performance of 2sCOPE via simulation studies and an empirical application.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha