Image from Google Jackets

Identification in a Binary Choice Panel Data Model with a Predetermined Covariate / Stéphane Bonhomme, Kevin Dano, Bryan S. Graham.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w31027.Publication details: Cambridge, Mass. National Bureau of Economic Research 2023.Description: 1 online resource: illustrations (black and white)Subject(s): Other classification:
  • C23
Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, are left unrestricted. We provide a simple condition under which θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of θ and show how to compute it using linear programming techniques. While θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about θ is possible even in short panels with feedback.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

March 2023.

We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, are left unrestricted. We provide a simple condition under which θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of θ and show how to compute it using linear programming techniques. While θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about θ is possible even in short panels with feedback.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha