Image from Google Jackets

Using Machine Learning to Construct Hedonic Price Indices / Michael Cafarella, Gabriel Ehrlich, Tian Gao, John C. Haltiwanger, Matthew D. Shapiro, Laura Zhao.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w31315.Publication details: Cambridge, Mass. National Bureau of Economic Research 2023.Description: 1 online resource: illustrations (black and white)Subject(s): Other classification:
  • C81
  • E31
Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: This paper uses machine learning (ML) to estimate hedonic price indices at scale from item-level transaction and product characteristics. The procedure uses state-of-the-art approaches from hedonic econometrics and implements them with a neural network ML approach. Applying the methodology to Nielsen Retail Scanner data leads to a large hedonic adjustment to the Tornqvist index for food product groups: Cumulative food inflation over the period from 2007 through 2015 is reduced by half from 5.9% to 2.8% -- owing to quality adjustment. These results suggest that quality improvement via product turnover is important even in product groups that are not normally considered to feature rapid technological progress. The approach in the paper thus demonstrates the feasibility and importance of implementing hedonic adjustment at scale.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w31315 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

June 2023.

This paper uses machine learning (ML) to estimate hedonic price indices at scale from item-level transaction and product characteristics. The procedure uses state-of-the-art approaches from hedonic econometrics and implements them with a neural network ML approach. Applying the methodology to Nielsen Retail Scanner data leads to a large hedonic adjustment to the Tornqvist index for food product groups: Cumulative food inflation over the period from 2007 through 2015 is reduced by half from 5.9% to 2.8% -- owing to quality adjustment. These results suggest that quality improvement via product turnover is important even in product groups that are not normally considered to feature rapid technological progress. The approach in the paper thus demonstrates the feasibility and importance of implementing hedonic adjustment at scale.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha