Image from Google Jackets

Econometric foundations / Ron C. Mittelhammer, George G. Judge, Douglas J. Miller.

By: Contributor(s): Material type: TextTextPublication details: Cambridge : Cambridge University Press, 2000.Description: xxviii, 756 páginas tablas, gráficas ; 25 cm + 1 CD-ROMContent type:
  • Texto
Media type:
  • Sin mediación
Carrier type:
  • Volumen
ISBN:
  • 0521623944
Subject(s): DDC classification:
  • 330.015195 M47 21
Other classification:
  • B23
Contents:
I. Information Processing Recovery: 1. The process of econometric information recovery ; 2. Probability-econometric models -- II. Regression model-estimation and inference: 3. The multivariate normal linear regression model: ML estimation ; 4. The multivariate normal linear regression model: inference ; 5. The linear semiparametric regression model: least squares estimation; 6. The linear semiparametric regression model: inference -- III. Extremum estimators and nonlinear and Nonnormal regression models: 7. Extremum estimation and inference ; 8. The nonlinear semiparametric regression model: estimation and inference ; 9. Nonlinear and nonnormal parametric regression models -- IV. Avoiding the parametric likelihood: 10. Stochastic regressors and moment-based estimation ; 11. Quasi-maximum likelihood and estimating equations ; 12. Empirical likelihood estimation and inference ; 13. Information theoretic-entropy approaches to estimation and inference -- V. Generalized regression models: 14. Regression models with a known general noise covariance matrix ; 15. Regression models with an unknown general noise covariance matrix -- VI. Simultaneous equation probability models and general moment-based estimation and inference: 16. Generalized moment-based estimation and inference ; 17. Simultaneous equations econometric models: estimation and inference -- VII. Model discovery: 18. Model discovery : the problem of variable selection and conditioning ; 19. Model discovery: the problem of noise covariance matrix specification -- VIII. Special Econometric Topics: 20. Qualitative-censored response models ; 21. Introduction to nonparametric density and regression analysis -- IX. Bayesian estimation and inference: 22. Bayesian estimation: general principles with a regression focus ; 23. Alternative Bayes formulations for the regression model ; 24. Bayesian inference -- X. Epilogue: Appendix: introduction to computer simulation and resampling methods. "
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Call number Status Notes Date due Barcode Item holds
LIBRO FISICO Biblioteca Principal 330.015195 M47 (Browse shelf(Opens below)) Available Mantener en colección. 29004018970623
Total holds: 0

Incluye bibliografías.

I. Information Processing Recovery: 1. The process of econometric information recovery ; 2. Probability-econometric models -- II. Regression model-estimation and inference: 3. The multivariate normal linear regression model: ML estimation ; 4. The multivariate normal linear regression model: inference ; 5. The linear semiparametric regression model: least squares estimation; 6. The linear semiparametric regression model: inference -- III. Extremum estimators and nonlinear and Nonnormal regression models: 7. Extremum estimation and inference ; 8. The nonlinear semiparametric regression model: estimation and inference ; 9. Nonlinear and nonnormal parametric regression models -- IV. Avoiding the parametric likelihood: 10. Stochastic regressors and moment-based estimation ; 11. Quasi-maximum likelihood and estimating equations ; 12. Empirical likelihood estimation and inference ; 13. Information theoretic-entropy approaches to estimation and inference -- V. Generalized regression models: 14. Regression models with a known general noise covariance matrix ; 15. Regression models with an unknown general noise covariance matrix -- VI. Simultaneous equation probability models and general moment-based estimation and inference: 16. Generalized moment-based estimation and inference ; 17. Simultaneous equations econometric models: estimation and inference -- VII. Model discovery: 18. Model discovery : the problem of variable selection and conditioning ; 19. Model discovery: the problem of noise covariance matrix specification -- VIII. Special Econometric Topics: 20. Qualitative-censored response models ; 21. Introduction to nonparametric density and regression analysis -- IX. Bayesian estimation and inference: 22. Bayesian estimation: general principles with a regression focus ; 23. Alternative Bayes formulations for the regression model ; 24. Bayesian inference -- X. Epilogue: Appendix: introduction to computer simulation and resampling methods. "

There are no comments on this title.

to post a comment.

Powered by Koha