Posterior Predictive Analysis for Evaluating DSGE Models / Jon Faust, Abhishek Gupta.
Material type:
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w17906 (Browse shelf(Opens below)) | Not For Loan |
March 2012.
While dynamic stochastic general equilibrium (DSGE) models for monetary policy analysis have come a long way, there is considerable difference of opinion over the role these models should play in the policy process. The paper develops three main points about assessing the value of these models. First, we document that DSGE models continue to have aspects of crude approximation and omission. This motivates the need for tools to reveal the strengths and weaknesses of the models--both to direct development efforts and to inform how best to use the current flawed models. Second, posterior predictive analysis provides a useful and economical tool for finding and communicating strengths and weaknesses. In particular, we adapt a form of discrepancy analysis as proposed by Gelman, et al. (1996). Third, we provide a nonstandard defense of posterior predictive analysis in the DSGE context against long-standing objections. We use the iconic Smets-Wouters model for illustrative purposes, showing a number of heretofore unrecognized properties that may be important from a policymaking perspective.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.